1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use num::Float;
use num::cast::NumCast;

use environment::{Space, FiniteSpace, Environment};

use trainer::EpisodicTrainer;

use agent::Agent;

use util::{LogDiffFunc, GradientDescAlgo};
use util::TimePeriod;

use stat::normalize;

/// A variation of the [Vanilla Policy Gradient](https://youtu.be/PtAIh9KSnjo?t=2590) algorithm
///
/// Instead of using a baseline, rewards are normalized to mean 0 and variance 1
#[derive(Debug)]
pub struct PolicyGradient<F: Float, G: GradientDescAlgo<F>> {
	/// Gradient descent algorithm
	grad_desc: G,
	/// Discount factor
	gamma: f64,
	/// Learning rate
	lr: F,
	/// Number of training iterations to perform when calling `train`
	iters: usize,
	/// Time period to evaluate each parameter sample on
	eval_period: TimePeriod,
}

// Have I deviated too much from the original algorithm here?
// Should there be a Baseline trait instead of always normalizing rewards?

// Sometimes I wonder if I'm using traits how they were meant to be used, because this just looks ugly
// Honestly, even disregarding the trait boilerplate, this whole implementation is pretty messy
impl<F: Float, S: Space, A: FiniteSpace, G, T> EpisodicTrainer<S, A, T> for PolicyGradient<F, G>
	where T: Agent<S, A> + LogDiffFunc<S, A, F>,
		  G: GradientDescAlgo<F> {
	fn train_step(&mut self, agent: &mut T, env: &mut Environment<State=S, Action=A>) {
		let (xs, ys, mut rs) = self.collect_trajectory(agent, env);
		if rs.len() > 0 {
			normalize(&mut rs);

			let mut grad = vec![F::zero(); agent.num_params()];
			for i in 0..rs.len() {
				let g = agent.log_grad(&xs[i], &ys[i]);
				let r = NumCast::from(rs[i]).unwrap();

				for j in 0..g.len() {
					grad[j] = grad[j] + g[j] * r;
				}
			}

			let mut params = agent.get_params();
			let grad_step = self.grad_desc.calculate(grad, self.lr);
			for i in 0..params.len() {
				params[i] = params[i] + grad_step[i];
			}

			agent.set_params(params);
		}
	}
	fn train(&mut self, agent: &mut T, env: &mut Environment<State=S, Action=A>) {
		for _ in 0..self.iters {
			self.train_step(agent, env);	
		}
	}
}

// Are these even good default values?
impl<G: GradientDescAlgo<f64>> PolicyGradient<f64, G> {
	/// Creates a PolicyGradient with default parameter values and given action space and gradient descent algorithm
	pub fn default(grad_desc: G) -> PolicyGradient<f64, G> {
		PolicyGradient {
			grad_desc: grad_desc,
			gamma: 0.99,
			lr: 0.0001,
			iters: 100,
			eval_period: TimePeriod::EPISODES(5)
		}
	}
}

impl<F: Float, G: GradientDescAlgo<F>> PolicyGradient<F, G> {
	/// Constructs a new PolicyGradient with given information
	pub fn new(grad_desc: G, gamma: f64, lr: F, iters: usize, eval_period: TimePeriod) -> PolicyGradient<F, G> {
		assert!(0.0 < gamma && gamma <= 1.0, "gamma must be between 0 and 1");
		assert!(F::zero() < lr && lr <= F::one(), "learning rate must be between 0 and 1");

		PolicyGradient {
			grad_desc: grad_desc,
			gamma: gamma,
			lr: lr,
			iters: iters,
			eval_period: eval_period,
		}
	}
	/// Updates gamma field of self
	pub fn gamma(mut self, gamma: f64) -> PolicyGradient<F, G> {
		assert!(0.0 <= gamma && gamma <= 1.0, "gamma must be between 0 and 1");

		self.gamma = gamma;
		self
	}
	/// Updates lr field of self
	pub fn lr(mut self, lr: F) -> PolicyGradient<F, G> {
		assert!(F::zero() <= lr && lr <= F::one(), "lr must be between 0 and 1");

		self.lr = lr;
		self
	}
	/// Updates iters field of self
	pub fn iters(mut self, iters: usize) -> PolicyGradient<F, G> {
		self.iters = iters;
		self
	}
	/// Updates eval_period field of self
	pub fn eval_period(mut self, eval_period: TimePeriod) -> PolicyGradient<F, G> {
		self.eval_period = eval_period;
		self
	}

	fn discount(&self, mut rewards: Vec<f64>) -> Vec<f64> {
		let mut running_sum = 0.0;
		for t in (0..rewards.len()).rev() {
			running_sum = running_sum * self.gamma + rewards[t];
			rewards[t] = running_sum;
		}
		return rewards;
	}
	fn collect_trajectory<S, A, T>(&self, agent: &mut T, env: &mut Environment<State=S, Action=A>) -> (Vec<S::Element>, Vec<A::Element>, Vec<f64>)
		where S: Space,
			  A: FiniteSpace,
			  T: Agent<S, A> + LogDiffFunc<S, A, F> {
		let (mut states, mut actions, mut rewards) = if let TimePeriod::TIMESTEPS(len) = self.eval_period.clone() {
			(Vec::with_capacity(len), Vec::with_capacity(len), Vec::with_capacity(len))
		} else {
			(Vec::new(), Vec::new(), Vec::new())
		};

		let mut ep_rewards = Vec::new();

		let mut obs = env.reset();
		let mut time_remaining = self.eval_period.clone();
		while !time_remaining.is_none() {
			let action = agent.get_action(&obs.state);
			let new_obs = env.step(&action);

			states.push(obs.state);
			actions.push(action);
			ep_rewards.push(new_obs.reward);

			time_remaining = time_remaining.dec(new_obs.done);
			obs = if new_obs.done {
				ep_rewards = self.discount(ep_rewards);
				rewards.extend_from_slice(&ep_rewards);

				ep_rewards.clear();
				env.reset()
			} else {new_obs};
		}

		rewards.extend_from_slice(&self.discount(ep_rewards));
		(states, actions, rewards)
	}
}