$$
%% Below are very ill-defined categories
%% Linear Algebra
\newcommand{\angled}[2]{\left\langle#1,#2\right\rangle}
\newcommand{\hvec}[2]{\begin{pmatrix}#1& #2\end{pmatrix}}
\newcommand{\hVec}[3]{\begin{pmatrix}#1& #2& #3\end{pmatrix}}
\newcommand{\vvec}[2]{\begin{pmatrix}#1\\#2\end{pmatrix}}
\newcommand{\vVec}[3]{\begin{pmatrix}#1\\#2\\#3\end{pmatrix}}
\newcommand{\mat}[4]{\begin{pmatrix}#1& #2\\ #3& #4\end{pmatrix}}
\newcommand{\Mat}[9]{\begin{pmatrix}#1& #2& #3\\#4& #5& #6\\#7& #8& #9\end{pmatrix}}
\newcommand{\Wedge}{\bigwedge\nolimits}
\newcommand{\Span}[1]{\spn\left\{#1\right\}}
\newcommand{\dual}[1]{#1^\vee}
\DeclareMathOperator{\spn}{span}
\DeclareMathOperator{\trace}{tr}
\DeclareMathOperator{\diag}{diag}
%% Abstract Algebra
\newcommand{\gen}[1]{\left\langle #1 \right\rangle}
\newcommand{\pres}[2]{\left\langle #1\mid #2 \right\rangle}
\newcommand{\op}[0]{^\text{op}}
\newcommand{\freemod}[0]{R^{\oplus S}}
\newcommand{\units}[1]{#1^{\times}}
\newcommand{\punits}[1]{\units{\parens{#1}}}
\newcommand{\inv}[1]{#1^{-1}}
\newcommand{\pinv}[1]{\inv{\parens{#1}}}
\newcommand{\sinv}{\inv S}
\newcommand{\invlim}{\varprojlim\limits}
\newcommand{\dirlim}{\varinjlim\limits}
\newcommand{\ses}[5]{
\begin{tikzcd}[ampersand replacement=\&]
0\arrow[r]\& #1\arrow[r, "#2"]\& #3\arrow[r, "#4"]\& #5\arrow[r]\&0
\end{tikzcd}
}
\newcommand{\scmplx}[5]{ % single complex
\begin{tikzcd}[ampersand replacement=\&]
#1\arrow[r, "#2"]\& #3\arrow[r, "#4"]\& #5
\end{tikzcd}
}
\newcommand{\lses}[5]{
\begin{tikzcd}[ampersand replacement=\&]
0\arrow[r]\& #1\arrow[r, "#2"]\& #3\arrow[r, "#4"]\& #5
\end{tikzcd}
}
\newcommand{\rses}[5]{
\begin{tikzcd}[ampersand replacement=\&]
#1\arrow[r, "#2"]\& #3\arrow[r, "#4"]\& #5\arrow[r]\&0
\end{tikzcd}
}
\newcommand{\ab}[1]{#1^{\mathrm{ab}}}
\newcommand{\normal}{\triangleleft}
\DeclareMathOperator{\image}{image}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\sHom}{\mathcal{H\mkern-7mu}\textit{om}}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\ann}{Ann}
\DeclareMathOperator{\ztensor}{\otimes_{\mathbb Z}}
\DeclareMathOperator{\zHom}{Hom_{\mathbb Z}}
\DeclareMathOperator{\qz}{\mathbb Q/\mathbb Z}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\Spin}{Sp} % TODO (?): Change to \Sp
\DeclareMathOperator{\Ind}{Ind}
\DeclareMathOperator{\CoInd}{CoInd}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ext}{Ext}
\renewcommand{\hom}{\mathrm H}
\DeclareMathOperator{\ZG}{\Z G}
\DeclareMathOperator{\sat}{sat}
\DeclareMathOperator{\Torsion}{Torsion}
\DeclareMathOperator{\lead}{lead}
\DeclareMathOperator{\qtensor}{\otimes_{\Q}}
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\PSL}{PSL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\SO}{SO}
\DeclareMathOperator{\ob}{ob}
\DeclareMathOperator{\Mor}{Mor}
\DeclareMathOperator{\Mod}{Mod}
\DeclareMathOperator{\Irr}{Irr} % Do I want a separate section for representation theory?
%% Algebraic Number Theory/Field Theory
\newcommand{\qadj}[1]{\mathbb Q\left(#1\right)}
\newcommand{\qadjs}[1]{\qadj{\sqrt {#1}}}
\newcommand{\qadjns}[1]{\qadjs{-#1}}
\newcommand{\qbrac}[1]{\mathbb Q\left[#1\right]}
\newcommand{\qext}[1]{\qadj{#1}/\mathbb Q}
\newcommand{\zadj}[1]{\mathbb Z\left[#1\right]}
\newcommand{\zadjs}[1]{\zadj{\sqrt {#1}}}
\newcommand{\zadjns}[1]{\zadjs{-#1}}
\newcommand{\zmod}[1]{\mathbb Z/#1\mathbb Z}
\newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)}
\newcommand{\ints}[1]{\mathscr O_{#1}}
\newcommand{\zloc}[1]{\Z_{(#1)}}
\newcommand{\loc}[2]{#1_{\mathfrak #2}}
\newcommand{\idealloc}[2]{\mathfrak #2\loc{#1}{#2}}
\newcommand{\Norm}[1]{\left\|#1\right\|}
\newcommand{\Zmod}[1]{\frac{\Z}{#1\Z}}
\newcommand{\qadjzeta}[1]{\Q\left(\zeta_{#1}\right)}
\newcommand{\zadjzeta}[1]{\Z\left[\zeta_{#1}\right]}
\newcommand{\sep}[1]{#1_{\mathrm{sep}}}
\newcommand{\nabs}[0]{|\,\cdot\,|} % norm + absolute value
\newcommand{\gnabs}[0]{|g^{-1}(\,\cdot\,)|}
\newcommand{\codiff}[1]{#1^* }
\newcommand{\compl}[1]{#1^{\wedge}} % Completion
\newcommand{\al}[1]{#1^{\mrm{al}}}
\DeclareMathOperator{\norm}{N}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\disc}{disc}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\knorm}{\norm_{K/\mathbb Q}}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\zdisc}{disc_{\mathbb Z}}
\DeclareMathOperator{\ktrace}{\trace_{K/\mathbb Q}}
\DeclareMathOperator{\Char}{char}
\DeclareMathOperator{\denom}{denom}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Fr}{Fr}
\DeclareMathOperator{\trdeg}{trdeg}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\atensor}{\otimes_A}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\vol}{vol}
\renewcommand{\split}{\textrm{split}}
\DeclareMathOperator{\Qbar}{\overline\Q}
\DeclareMathOperator{\lcm}{lcm}
%% Modular Forms/Curves
\newcommand{\sump}{\sideset{}'\sum}
\newcommand{\prodp}{\sideset{}'\prod}
\newcommand{\slz}{\SL_2(\Z)}
\newcommand{\glp}{\GL_2^+}
\renewcommand{\sp}[1]{\sqbracks{\C/\Lambda_{#1},\frac1N+\Lam_{#1}}}
\newcommand{\Sp}[2]{\sqbracks{\C/\Lambda_{#1},\frac1{#2}+\Lam_{#1}}}
\newcommand{\spp}[1]{\sqbracks{\C/\Lambda_{#1},\parens{\frac{#1}N+\Lam_{#1},\frac1N+\Lam_{#1}}}}
\newcommand{\Spp}[2]{\sqbracks{\C/\Lambda_{#1},\parens{\frac{#1}{#2}+\Lam_{#1},\frac1{#2}+\Lam_{#1}}}}
\newcommand{\sg}[1]{\sqbracks{\C/\Lambda_{#1},\angles{\frac1N+\Lam_{#1}}}}
\newcommand{\Sg}[2]{\sqbracks{\C/\Lambda_{#1},\angles{\frac1{#2}+\Lam_{#1}}}}
\newcommand{\pmI}{\bracks{\pm I}}
%% Group cohomology/class field theory
\DeclareMathOperator{\cores}{cor}
\DeclareMathOperator{\tatehom}{\wh\hom}
%% Point-Set Topology
\newcommand{\closure}[1]{\bar{#1}}
\newcommand{\clos}[1]{\overline{#1}}
\newcommand{\interior}[1]{\mathring{#1}}
\newcommand{\open}{\overset{\text{open}}\subset}
\newcommand{\cp}[1]{\overline{\{#1\}}} % closure of point
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\SP}{SP}
\DeclareMathOperator{\Homeo}{Homeo}
%% Differential Geometry/Topology
\newcommand{\pderiv}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\pderivf}[2]{\partial #1/\partial #2}
\newcommand{\pderivd}[1]{\pderiv{}{#1}}
\newcommand{\pderivdf}[1]{\pderivf{}{#1}}
\newcommand{\Pderiv}[3]{\frac{\partial #1}{\partial #2\partial #3}}
\newcommand{\dtwo}[1]{\pderiv{#1}x\,dx + \pderiv{#1}y\,dy}
\newcommand{\dthree}[1]{\dtwo{#1} + \pderiv{#1}z\,dz}
\newcommand{\smooth}[0]{C^\infty}
\newcommand{\del}[0]{\partial}
\newcommand{\vft}[2]{#1\pderivd{x_1}+#2\pderivd{x_2}} % vector (field) in \R^2
\newcommand{\dt}[0]{\d t}
\newcommand{\dx}[0]{\d x}
\newcommand{\dy}[0]{\d y}
\newcommand{\dz}[0]{\d z}
\newcommand{\dbz}[0]{\d\bar z}
\newcommand{\df}[0]{\d f}
\newcommand{\dm}[0]{\d m}
\renewcommand{\d}{\mathrm d} % This had a \, in the front before. Will I regret removing it?
\DeclareMathOperator{\Tube}{Tube}
\DeclareMathOperator{\dvol}{dvol}
\DeclareMathOperator{\Todd}{Todd}
\DeclareMathOperator{\ch}{ch}
%% Algebraic Topology
\DeclareMathOperator{\simhom}{\hom^\Delta}
\DeclareMathOperator{\redhom}{\wt\hom}
\DeclareMathOperator{\RP}{\mathbb R\mathbb P}
\DeclareMathOperator{\CP}{\mathbb C\mathbb P}
\DeclareMathOperator{\fiber}{fiber}
\DeclareMathOperator{\hofiber}{hofiber}
% Lie Theory
\newcommand{\dg}{\d g}
\newcommand{\rs}[1]{#1^{\mrm{rs}}}
\newcommand{\der}[1]{#1^{\mrm{der}}}
\DeclareMathOperator{\Lie}{Lie}
\DeclareMathOperator{\ad}{ad}
\DeclareMathOperator{\Ad}{Ad}
%% Complex/Algebraic Geometry + Sheaf Theory
\newcommand{\msEX}[1]{\msE_X^{(#1)}}
\newcommand{\red}[1]{#1_{\mrm{red}}}
\newcommand{\cs}[1]{\parens{\ints{#1},\abs{#1}}} % Complex space
\newcommand{\derpush}[2]{#2_{* #1}}
\newcommand{\smp}[1]{#1^{\mrm{sm}}} % smooth points
\renewcommand{\sharp}[1]{#1^\#}
\DeclareMathOperator{\Spec}{\mbf{Spec}}
\DeclareMathOperator{\spec}{spec}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\PAb}{PAb}
\DeclareMathOperator{\Ab}{Ab}
\DeclareMathOperator{\pker}{pker}
\DeclareMathOperator{\pim}{pim}
\DeclareMathOperator{\pcoker}{pcoker}
\DeclareMathOperator{\Et}{Et}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\bdel}{\bar\del}
\DeclareMathOperator{\cechhom}{\check{H}}
\DeclareMathOperator{\chom}{\cechhom}
\DeclareMathOperator{\kod}{kod}
\DeclareMathOperator{\Sing}{Sing}
\DeclareMathOperator{\Alb}{Alb}
\DeclareMathOperator{\NS}{NS}
\DeclareMathOperator{\Ht}{ht}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\Sch}{Sch}
\DeclareMathOperator{\Bl}{Bl}
%% Analysis
\newcommand{\meas}{m_{\star}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\dabs}[1]{\left\|#1\right\|}
\DeclareMathOperator{\BV}{BV}
%% Quantum Mechanics/Computing
\newcommand{\ket}[1]{\left|#1\right>}
\newcommand{\keteps}{\ket\eps}
%% Cryptography
\newcommand{\bits}{\{0,1\}}
\newcommand{\concat}{\,\|\,}
\newcommand{\uniform}{\xleftarrow R}
\DeclareMathOperator{\Adv}{Adv}
\DeclareMathOperator{\parity}{parity}
\DeclareMathOperator{\reverse}{reverse}
\DeclareMathOperator{\EXP}{EXP}
\DeclareMathOperator{\poly}{poly}
\DeclareMathOperator{\perm}{perm}
\DeclareMathOperator{\Commit}{Commit}
\DeclareMathOperator{\negl}{negl}
\DeclareMathOperator{\PRF}{PRFAdv}
\DeclareMathOperator{\SCPRF}{SC-PRF}
\DeclareMathOperator{\DDH}{DDHAdv}
\DeclareMathOperator{\pub}{pub}
\DeclareMathOperator{\priv}{priv}
\DeclareMathOperator{\key}{key}
%% Complexity Theory
\DeclareMathOperator{\NP}{NP}
\DeclareMathOperator{\NL}{NL}
\DeclareMathOperator{\coNL}{coNL}
\DeclareMathOperator{\coNP}{coNP}
\DeclareMathOperator{\TIME}{TIME}
\DeclareMathOperator{\ccP}{P} % cc = complexity class
\DeclareMathOperator{\SAT}{SAT}
\DeclareMathOperator{\UNSAT}{UNSAT}
\DeclareMathOperator{\Perm}{Perm} % Permanent of a matrix
\DeclareMathOperator{\MAJPP}{MAJPP}
\DeclareMathOperator{\ccRP}{RP}
\DeclareMathOperator{\coRP}{coRP}
\DeclareMathOperator{\ZPP}{ZPP}
%% Logic
\newcommand{\biglor}{\bigvee}
\newcommand{\bigland}{\bigwedge}
%% Machine Learning
\newcommand{\grad}{\nabla}
\newcommand{\Ith}[2]{#1^{\left(#2\right)}}
\newcommand{\ith}[1]{\Ith{#1}i}
\newcommand{\Itht}[2]{(\Ith{#1}{#2})^T}
\newcommand{\Ithi}[2]{(\Ith{#1}{#2})^{-1}}
\newcommand{\itht}[1]{(\ith{#1})^T}
\newcommand{\Layer}[2]{#1^{\left[#2\right]}}
\newcommand{\KL}[2]{\mathrm{KL}\left(#1\left\|\,#2\right.\right)}
%% Probability/Statistics
\newcommand{\prb}[1]{P\left\{#1\right\}}
\DeclareMathOperator{\Cov}{Cov}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\Corr}{Corr}
%% Diagrams
\newcommand{\commsquare}[8]{
\begin{tikzcd}[ampersand replacement=\&]
#1\ar[r, "#2"]\ar[d, "#4" left]\& #3\ar[d, "#5" right]\\
#6\ar[r, "#7" above]\& #8
\end{tikzcd}
}
\newcommand{\pullback}[6]{\commsquare{#1}{}{#2}{}{#3}{#4}{#5}{#6}}
\newcommand{\pushforward}[6]{\commsquare{#1}{#2}{#3}{#4}{}{#5}{}{#6}}
\newcommand{\barecommsquare}[4]{\commsquare{#1}{}{#2}{}{}{#3}{}{#4}}
%% Limit type things
%% Letters/Fonts
\newcommand{\mfp}{\mathfrak p}
\newcommand{\mfm}{\mathfrak m}
\newcommand{\mfX}{\mathfrak X}
\newcommand{\mfg}{\mathfrak g}
\newcommand{\mfh}{\mathfrak h}
\newcommand{\mfH}{\mathfrak H}
\newcommand{\mft}{\mathfrak t}
\newcommand{\mfgl}{\mathfrak{gl}}
\newcommand{\mfsl}{\mathfrak{sl}}
\newcommand{\mfso}{\mathfrak{so}}
\newcommand{\mbf}{\mathbf}
\newcommand{\mbfx}{\mathbf x}
\newcommand{\mbfy}{\mathbf y}
\newcommand{\mbfU}{\mathbf U}
\newcommand{\msO}{\mathscr O}
\newcommand{\mscr}{\mathscr}
\newcommand{\mf}{\mathfrak}
\newcommand{\mfc}{\mf c}
\newcommand{\msI}{\mathscr I}
\newcommand{\msJ}{\mathscr J}
\newcommand{\msP}{\mathscr P}
\newcommand{\msF}{\ms F}
\newcommand{\msL}{\ms L}
\newcommand{\msM}{\ms M}
\newcommand{\msG}{\ms G}
\newcommand{\ms}{\mathscr}
\newcommand{\mfq}{\mf q}
\newcommand{\mfP}{\mf P}
\newcommand{\mc}{\mathcal}
\newcommand{\mcA}{\mc A}
\newcommand{\mcB}{\mc B}
\newcommand{\mcV}{\mc V}
\newcommand{\mcU}{\mc U}
\newcommand{\mcW}{\mc W}
\newcommand{\mcF}{\mc F}
\newcommand{\mfa}{\mf a}
\newcommand{\mfb}{\mf b}
\newcommand{\mbb}{\mathbb}
\newcommand{\msR}{\ms R}
\newcommand{\msS}{\ms S}
\newcommand{\msA}{\ms A}
\newcommand{\mcH}{\mc H}
\newcommand{\mcS}{\mc S}
\newcommand{\mcM}{\mc M}
\newcommand{\mcL}{\mc L}
\newcommand{\mrm}{\mathrm}
\newcommand{\Lam}{\Lambda}
%\renewcommand{\S}{\mathbb S}
\newcommand{\F}{\mathbb F}
\newcommand{\Q}{\mathbb Q}
\newcommand{\Z}{\mathbb Z}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\E}{\mathbb E}
\newcommand{\N}{\mathbb N}
\newcommand{\T}{\mathbb T}
\newcommand{\A}{\mathbb A}
\newcommand{\eps}{\varepsilon}
\newcommand{\vphi}{\varphi}
\renewcommand{\P}{\mathbb P}
\DeclareMathOperator{\msE}{\ms E}
\renewcommand{\a}{\alpha}
\renewcommand{\b}{\beta}
%% Grouping Operators
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\parens}[1]{\left(#1\right)}
\newcommand{\brackets}[1]{\left\{#1\right\}}
\newcommand{\bracks}[1]{\brackets{#1}}
\newcommand{\sqbracks}[1]{\left[#1\right]}
\newcommand{\angles}[1]{\left\langle#1\right\rangle}
\newcommand{\coint}[2]{\left[#1,#2\right)} % Closed, open interval
%% Misc
\newcommand{\actson}{\curvearrowright}
\newcommand{\conj}{\overline}
\newcommand{\tbf}{\textbf}
\newcommand{\bp}[1]{\tbf{(#1)}} % bold parens
\newcommand{\Item}[1]{\item[\tbf{(#1)}]}
\newcommand{\jota}{\reflectbox{$\iota$}}
\newcommand{\atoi}{\jota}
\newcommand{\omittedproof}{\begin{proof}Omitted\end{proof}}
\newcommand{\sm}{\setminus}
\renewcommand{\l}{\ell}
\newcommand{\st}{\tilde} % small tilde
\newcommand{\wt}{\widetilde}
\newcommand{\sh}{\hat} % small hat
\newcommand{\wh}{\widehat}
\newcommand{\vsubseteq}{\rotatebox{90}{$\subseteq$}}
\renewcommand{\ast}[1]{#1^* }
\newcommand{\twocases}[3]{
\begin{cases}
\hfill#1\hfill&\text{if }#2\\
\hfill#3\hfill&\text{otherwise}
\end{cases}
}
\newcommand{\Twocases}[4]{
\begin{cases}
\hfill#1\hfill&\text{if }#2\\
\hfill#3\hfill&\text{if }#4
\end{cases}
}
\newcommand{\xlongleftarrow}[1]{\overset{#1}{\longleftarrow}}
\newcommand{\xlongrightarrow}[1]{\overset{#1}{\longrightarrow}}
\newcommand{\push}[1]{#1_* }
\newcommand{\pull}[1]{#1^* }
\newcommand{\by}{\times}
\newcommand{\from}{\leftarrow}
\newcommand{\xto}{\xrightarrow}
\newcommand{\xfrom}{\xleftarrow}
\newcommand{\xinto}[1]{\overset{#1}\into}
\newcommand{\too}{\longrightarrow}
\newcommand{\xtoo}{\xlongrightarrow}
\newcommand{\iso}{\xto\sim}
\newcommand{\into}{\hookrightarrow}
\newcommand{\onto}{\twoheadrightarrow}
\newcommand{\dashto}{\dashrightarrow}
\newcommand{\mapdesc}[5]{
\begin{matrix}
#1:& #2 &\longrightarrow& #3\\
& #4&\longmapsto& #5
\end{matrix}
}
\renewcommand{\div}{\mathrm{div}} % Might regret this one day
\DeclareMathOperator{\sign}{sign}
\renewcommand{\Re}{\mathrm{Re}}
\renewcommand{\Im}{\mathrm{Im}}
\newcommand{\nimplies}{\nRightarrow}
\renewcommand{\bar}{\overline}
\DeclareMathOperator{\Map}{Map}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\Cont}{Cont}
\DeclareMathOperator{\Open}{Open}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\Id}{Id}
\DeclareMathOperator{\pr}{pr}
$$
Artinian ring
C++
CS
CW complexes
Chip-8
Dedekind domain
Haskell
L-function
Python
REnforce
Rust
UFD
absolute value
adeles
algebra
- A Quick Note on Rings with Mostly Zero Divisors
- UFDs and Localization
- Orbit-Stabilizer for Finite Group Representations
- Algebra Part II
- Addition Done Right
- Algebra Part I
- Fundamental Theorem of Algebra
- Square Triangles
- Modular Arithmetic
- Sums of Powers
algebraic curves
algebraic geometry
algebraic number theory
algebraic topology
analytic
analytic number theory
bernoulli number
bernoulli polynomial
calculus
category theory
cayley-hamilton
chern classes
class
class group
classifying spaces
code
cohomology
combinatorics
commutative algebra
completion
complex geometry
complex numbers
complex surfaces
conjecture
covering space
dedekind domain
duality
elliptic curve
elliptic curves
elliptic surfaces
emulator
enumerative geometry
euler class
fields
first
for me
fourier analysis
free groups
fundamental
fundamental group
galois group
galois representation
galois theory
game theory
generating functions
geometric group theory
geometry
geometry of numbers
graph theory
graphs
group actions
group theory
groups
homological algebra
homotopy
homotopy theory
irreducible
linear algebra
local fields
localization
macros
marriage pact
math
- Classification of (Complex) Elliptic Surfaces without Multiple Fibers
- Characteristic Classes
- A Tour of Some Number Theory: Part I: Elliptic Curves
- Brown Representability
- Spectral Sequences
- A Nice Lemma about Dedekind Domains
- $\ell$-adic Representations of Elliptic Curves
- The Duality Between Algebra and Geometry
- Dedekind Domains Done Right
- Some Classic Affine Algebraic Geometry
- Covering Spaces, $\pi_1$-actions, and Locally Constant Sheaves
- Adeles
- A Quick Note on Values of the Riemann Zeta Function
- Riemann, Dirichlet, and Their Favorite Letters
- "Fourier Analysis"
- Covering Spaces
- An Interesting Equation II
- Love is in the Air
- Absolute Values and p-adics
- A Quick Note on Rings with Mostly Zero Divisors
- The Things That Keep Me Up At Night
- UFDs and Localization
- Orbit-Stabilizer for Finite Group Representations
- Groups Aren't Abstract Nonsense
- Difference of squares
- An interesting equation
- Algebra Part II
- Addition Done Right
- Algebra Part I
- Solving Pell's Equations
- Fundamental Theorem of Algebra
- A Little Bit of Number Theory
- When do you understand mathematics?
- A Tantonalizing Stolen Title
- Surreal Numbers
- Euler's Formula
- Probabilistic Method
- Goldilocks and the Three Bears
- Square Triangles
- Modular Arithmetic
- Sums of Powers
- Constructing Numbers
matrix
maybe some other stuff
modular
monodromy
non-standard material
nullstellensatz
number theory
- A Tour of Some Number Theory: Part I: Elliptic Curves
- Riemann, Dirichlet, and Their Favorite Letters
- An Interesting Equation II
- Difference of squares
- An interesting equation
- Solving Pell's Equations
- A Little Bit of Number Theory
- Probabilistic Method
- Square Triangles
- Modular Arithmetic
obstruction theory
p-adic
primer
probability
problem
projective module
quadratic reciprocity
quick
representable functors
representation
representation theory
riemann zeta
rings
schemes
separation axioms
sets
sheaf
spec
spheres
stolen
sum
surreal numbers
thoughts
topology
vector bundle
wrapper
zeta